Exploring the state sequence space for hidden Markov and semi-Markov chains

نویسنده

  • Yann Guédon
چکیده

The knowledge of the state sequences that explain a given observed sequence for a known hidden Markovian model is the basis of various methods that may be divided into three categories: (i) enumeration of state sequences; (ii) summary of the possible state sequences in state profiles; (iii) computation of a global measure of the state sequence uncertainty. Concerning the first category, the generalized Viterbi algorithm for computing the top L most probable state sequences and the forward-backward algorithm for sampling state sequences are derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the second category, a new type of state (and state change) profiles is proposed. The Viterbi forward–backward algorithm for computing these state profiles is derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the third category, an algorithm for computing the entropy of the state sequence that explains an observed sequence is proposed. The complementarity and properties of these methods for exploring the state sequence space (including the classical state profiles computed by the forward–backward algorithm) are investigated and illustrated with examples. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain

 In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

A Successive Lumping Procedure for a Class of Markov Chains

A class of Markov chains we call successively lumpable is specified for which it is shown that the stationary probabilities can be obtained by successively computing the stationary probabilities of a propitiously constructed sequence of Markov chains. Each of the latter chains has a(typically much) smaller state space and this yields significant computational improvements. We discuss how the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007